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A periodic contact problem for an elastic half-plane with elastic laps of finite length 

and constant thickness is considered herein. 

The solution of this problem reduces to a singular integro-differential equation with 
a Hilbert kernel in an interval not coincident with (- nc, n), which permits the deter- 
mination of contact stresses along the sections where the elastic laps are fastened to the 

half-plane. An effective solution of this equation containing explicitly those singulari- 
ties which characterized the state of stress of the elastic laps in the neighborhoods of 

their ends, is presented. 

insofar as we know, this is the first formulation and solution of the problem mentioned. 

1, Formulation of the problem. Derfvitton of the fundamental 

equation rnd itr rolutlon, Let a half-plane be reinforced at finite segments 
[--a + ZnZ, a + 21211 (I > a, n = 0, &- 1, -+ Z,...) by elastic fastenings dup- 
licated periodically with period 21 in the form of welded (or glued) elastic laps of con- 
stant sufficiently small thickness h (Fig. 1). The purpose of the investigation is to deter- 
mine the law of contact stress distribution along the segments where the elastic laps are 
fastened to the elastic half-plane when concentrated forces P directed along their axis 

are applied to one of the ends of the laps, As in [1], we shall assume that the bending 

Fig. 1 

stiffness of the laps is negligibly small because of the smallness of the thickness h, and 
hence, the normal pressure of the laps on the half-plane can be neglected. In other 
words, we assume that only tangential contact stresses act on the laps, i.e. they are in 
a uniaxial state of stress. 

Let us utilize the following system of notation: we denote the displacements and 
strains in the laps by the subscript 1, and in the half-plane by the subscript 2, and ana- 
logously for the notation of the physical constants of the materials of the laps and of the 

half-plane. 

Since the law of contact stress distribution under the laps is the same because of the 
periodic nature of the problem, the co~ideratio~ can be limited to one of them, say 
that for which fi = 0. Forming the equilibrium equation of this lap. and then utilizing 
Hooke’s law, we can establish the relationship 
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s 

p = flu(‘) 
‘.I __ = & 5 T(‘)(EJdE (1X 

(1.1) 
-a 

Here E, is the elastic modulus of the lap material, u(l) (x) are the horizontal displace- 

ments of points connecting the lap to the elastic half-plane, i.e. points of the segment 

[----a, al, and t(r) (x) are the tangential stresses acting on the lap along the line con- 

necting it to the half-plane. 

On the other hand, on the basis of the reciprocity law it is known C2] that the horizon- 

tal displacements u (‘) (x) of boundary points of the elastic half-plane, caused by the 

tangential contact stresses of intensity r (2) (x), distributed over the segment [--a, a] 

and repeated periodically with period 21 , are determined by the formula 

a 7_&) (z) 2(1--2) 1 

?CE:! s 

1* 1 _ 
2 1 sm [n (Z - Q/2 ] I T(2) (E) dj 

-a 

where Y is Poisson’s ratio, and E2 is the elastic modulus of the half-plane. 

We hence obtain d&2) 1 - v2 
E,(Z) = - = ___ 

dX EJ -“, 
ct g (f-4 

The integral is understood here in the Cauchy principal value sense. 

The condition u(l) (x) .c u(2) (5) (?fZO, --a<z .<!z) (1.3) 

should be satisfied on the contact section [--a,~] between the elastic lap and the half- 

plane, or if differentiation is performed, the condition 

(1.4) 
It should be noted that conditions (1.3), (1.4) are equivalent, since the constant which 

appears when (1.4) is integrated is zero because the elastic laps are welded to the half- 

plane, and hence, they should be displaced together. as one whole. 

Substituting the expressions for &(,I) and EC) from (1. l), (1.2) into condition (1.4), 

we arrive at the singular integro-differential equation 

(1.5) 

where 

$ (a$ = 1 r (s) ds, z (z) = r(‘)(z) = - T@)(Z) 1\= EZl 
9 zn (1 - 9) hE1 

-a 

and the integral on the left should be understood in the Cauchy principal value sense. 

It is easily seen from (1.1) that the function II, (5) should satisfy the conditions 

II, (-a) = 0, Jj (a) = P (1.6) 
Therefore, the periodic contact problem for an elastic half-plane reinforced by period- 

ically repeated elastic laps of constant thickness h with period 21 , reduces to the solu- 

tion of the integro-differential equation (1.5) with a Hilbert kernel under the boundary 

conditions (1.6). 

Putting 
llX Je sta 
--Et, -=s, -=a, 
1 1 1 

q;-)='Pw 

we represent the integro-differential equation (1. 5) under the boundary conditions (1.6) 

as 
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1 d 
- 1 ctg 22% 

+ cp’ (s) ds = - hp (t) (1.7) 
-a 

rp(--a) = 0, tP(a)=P (1.8) 
The contact stress will now be determined by the formula 

z (x) = -+p,‘@) (t = 7) (1.9) 

Let us turn to the solution of the integro-differential equation (1.7) under the bound- 

ary conditions (1.8). To do this, let us first invert (1.7) by considering it as an integral 

epuation of the first kind with kernel @r)-’ ctg l/s fs - t) and the unknown function 
v tt)* The inversion formula for this equation is known to be (*) 1’2, 3] 

V(t) = 
h { VCOSS - cos ag, (a) ds A 1/2 cos “1% t 

2n )/cost-cosa ~ sin 1/S (s - t) + f/cost - cosz 
(1.10) 

To determine the unknown constant A we integrate both sides of (1.10) and hence 
obtain 

9(t)= -& ~Vco=-coWWdsS t’eost_eo~~sinIk(s_tl) + 
-I% 

+ZAarcsinsfC 

Let us evaluate the inner integral by first representing it as 

J(tTs)=S ~cost-ca~asin1,2(s-t) = 
dt 

Here putting 
tg ‘I!? t U=-, Y 

tg ‘la s 
tg VZ a =tg’lza 

we obtain after elementary manipulation 

J(&s)= 0 C-d” 
sinr/~acosr/2s c vi -nu~(~_~) 

But the expression for the last integral has been presented in [4J. Utilizing this 
expression, and returning to the previous variables, we find 

J (t, s) = 
1 

If 

I* 2 co3 ‘/z t cos ‘jr 8 - 2 (co9 ‘/a rp cos l/a (t - 8) + 6 (t ( s) 
COSS-cos a 2 cos l/2 2 cos ‘/a s - 2 (cos ‘/z zz)” cos l/z (t - s) Y 6 (I$) 

e(t,s) == f(cost- COSc%)(cOSS- cosa) (1.11) 

Keeping in mind the expression found for J (t, s), we obtain 
Lx 

rpfQ= -&s ~(t,s)cp(s)ds+ZAarcsin~+C (1.12) 
-0 

l ) In [33 the solution of the mentioned integral equation is reduced to the solution of 
some Riemann boundary value problem. An error was admitted there in constructing 
the canonical solution of this problem, which reduces finally to the nonintegra1 term in 
the inversion formula containing sin l/2 t rather than co9 l/t t . 
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K(f,s)=J(t, S)fcoSS-cosa (1.13) 

It is easy to see that g (a, s) G K (-a, S) f 0, (-a < s < a). This latter 
condition together with the boundary conditions (1.8) permit determination of the un- 

known constants from (1.1‘2) A = l,sP , 3t, c = “l,P 
We simultaneously find the following result : the solution of the integro-differential 

equation (1.7) under the boundary conditions (1.8) is equivalent to the solution of linear 

second-order Fredholm integral equation 

with kernel K (t, S) being expressed by formulas (1.13) and (1.11). 
It follows directly from the results of [4] (Sect. 3). that the integral operator generated 

by the kernel K (t, a> ( -a < t, s < a) and defined by (1.13) and (1.11) is complet- 

ely continuous in the space L, (-a, a) ,and transforms elements of this space again 
into elements of the same space. Moreover, it is a Hilbert-Schmidt operator. This im- 
portant circumstance permits obtaining the solution of the integral equation (1.14) by 

the known method of successive approximation. However, it must be noted that those 
singula~ties which are exceptionally im~rtant to clarification of the physical picture 

of the state of stress of the elastic laps in the neighborhoods of their ends, and which 
characterize the mechanical essence of the problem under consideration in a known 
sense, are not manifest in such a method of solving the integro-differential equation 

(I. 7). 
In order to represent explicitly those singularities which are inherent to the tangential 

contact stresses ‘G (z) under the elastic laps in the neighborh~s of their ends, we pro- 

pose another method of solving the integro-differential equation (1.7) subject to the 

boundary conditions (1.8). This method affords the possibility not only of representing 
the singularities in the neighborhood of the ends of the laps explicitly,which is most im- 
portant to us, but permits, moreover, finding the values of the contact stress z (z) = 
= rt I 2 9’ (t) (t = 3t$ f a) under the laps directly. Finally, this method permits the 
construction of approximate values of the contact stress ‘z (z),say the nth approximation, 
by passing the determination of the previous approximations and estimating this appro- 

ximation. 
Now, let us turn to an exposition of the method. The contact stress ‘G (5) (-a < 

< z f a) equals zero identically for a < lzl < I, changes periodically with period 
21, hence it can be represented as a Fourier series. When using the variable t this period 

becomes equal to 2n, therefore we can write 

cp’ (t) = 9 + $ kp, cos kt - ka, sin kt (--at<,0 (1.15) 
k=l 

Let us emphasize that the trigonometric series in the right side of (I. 15) is a Fourier 

series expansion of the function 

I 

0 (---<~<--a) 

f (t) - 9 PI (---a<tia) (1.16) 
0 (=<t<N 
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i. e. 00 

f(1) = -q- + 2 kPk cos kt - ka, sin kt (-n<t<J9 (1.17) 

because of the above. 
k=l 

Hence,we find a,= P/n for the zero coefficient according to the Fourier formula and 
utilization of (1.15) and the boundary conditions (1.8). 

Putting 

F(t) = \ f(S)& (-n<t<Jf) 
A 

(1.18) 

and integrating both sides of (1.17) in the range (-a, t) we obtain 

ak cos kt + Pr sin kt t--n<<4 (1.19) 
k=l 

where y is a constant of integration. The method to determine it will be indicated in 
the next section. 

The function F (t) is defined only in the interval (-n, a). On the rest of the real 
axis we define it by means of a periodic continuation of the function (1.18) with period 

2rt . It is easily seen from (1.19) that this continuation actually reduces to a periodic 
continuation of the linear function g (t) = y j- l/, Pt/n with period 2~ . We shall 

henceforth understand the function F (t) to be the function (1.18) continued in precise- 
ly this way over the whole real axis. 

Taking account of (1.16) and (1,18), it is easy to note that 

I 
0 (---<t64 

F(t) = cP(t) (--<<GM 

P (a6t<4 

Therefore, the expansion 

’ t +i UkcOSkt+pRShkt cp (t) = T + 2n 
holds. k=l 

Let us expand the linear function g (t) = y + llrrPt / rc 
over the whole real axis with period 2n , in a Fourier series 

g(t)=y+&=y+2Pjg yk+l sin kt 
k=l 

Then the function cp (t) can be represented as 

V(t) =r+S pk-(-l)k$--]sinkt 
k=l 

(1.20) 

(--6<taa) (1.21) 

continued periodically 

(-fin<<4 

(--<<<aa) (1.22) 

Let us note that the need for periodic continuation of the function(1.B) results from 
the physical nature of the problem being examined. Namely: deformations of points of 
the elastic lap with number zero are determined by the function cp (rtz / I)= 9 (2) 

(-a < z < a) by using (1. l), and deformations of the boundary points of the elastic 
half-plane _ I < z < 1 by the functions F (J%X / I) (-t < x < 2) Since the 
problem is periodic, the picture of the state of strain of this half-strip should be repeated 
periodically with period 21,consequently. the function F (JIX / 1) should be periodic 
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with period 21, and the function F (t) should be periodic with period &-t. 
Therefore the validity of the representation of the function cp (t) in the form (1.21) 

is well founded. 

Let us turn to the exposition of the proposed method of solving the integro-differential 

equation (1.7) under the boundary conditions (1.8). Let us proceed from (1.10). Taking 
account 0; the value of the constant A found above, we obtain 

q’ (t) = 
h s a ~/co-cosup(s)~+ P cos ‘/z t 

23% fcos t - cos a sin 1/Z (s-t) n: 1/2 (cos t - cos a) 
--c 

(-3<t<Co 

Substituting the exposition (1.22) for the function q(t) into the last expression, we 
find 

cp’ (0 = 
P cos ‘12 t hT 

n f/z (cos t - cos a) + I/cos 2 - co9 a JO (t) + 
(1.23) 

where 

Jk(t)‘& 5 d l/toss-cosucosks dS 
sin 1/t (s - t) 

(k=l 2 
, ,... 

) 
(1.25) 

-4 

Ikct) = & 1 a )/toss-cosasinks ds 
sin 1/Z (s - t) 

(k=l 2 
9 ). . . 

) 
(1.26) 

-4 
These integrals are evaluated below. 
For what follows, let us first note that 

)/C~SS-_COS a = l/Z fiexp (- I/&) [(e” - e”) (ei6 - e-I”)]“* 

Sin l/2 (I - t) = - I/.$ exp I- ‘lpi (t + s)] (eie - eif) 

Then formulas (1.24)-( 1.26) become 

Jo(t) = 
i exp I/tit \ [(e” - eia)-(eis - e-I”)J”* ds 

n IQ -> eis - p 

J, ft) = 
[(e’” - el”) (et* _ e*a)J112(eikr + emfks) ds (k = i 

. 
2 
, . . . 

) 

I, lt) = 
a I(e” - eia) (eis - e-is)]z~z(efkr - edkr) ds 

efs - eff 

Let us pass from the segment [-a, a] on the real axis to the arc da of the unit cir- 
cle, whereupon we put e~a 

= 5, elf = q eia = a 

and hence obtain 
0 a I(5--0)G--a)l”W J,(-ilna)=Jo’(a)= 2n ?. c EK--a) 

a 

(1.27) 
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Jk’(_ i In 5) = J,* (3) = 

I,(-_ In a) = I,* (5) = 

ItI; - 4 (5 - m’b (Ck--’ + rk+‘l 
6-a 

4 (1.28) 

- a) (5 - a)]“’ (p-l - c-k+‘) 

5 --Q 
d5 

(k = 1, 2,. . ..) (1.29) 

Proceeding to the evaluation of the integral J,,*(S), let us introduce the piecewise- 

holomorphic function [(W - a) (zu- a)]“2 dw 

c 
w (w - 2) 

with the contour of integration C shown in Fig. 2. 

The function [(w - a) (w - E)]“’ in this integral is a double-valued function with 
the branch points w = a, w = E located on the unit circle with center at the origin. 

As it is easy to see, a single-valued analytic branch of this function can be selected in 
the plane slit along the arc &I of the unit circle. Let us select the branch for which 

Fig. 2 

the radical is taken with the plus sign. Henceforth we shall 

understand [(w - a) (W - c~)l’/* to be precisely this branch. 
Then the function 

f(w) = w”[(W - a) (w - ii)]“’ 

can be represented for 1 w [ > 1 as 

f(w) = 1 + O(w_1) 

In order to clarify the structure of the function I(U) at the 
origin, let us put 

Therefore 
f(w) = - w-l@ - W)“‘(6 - w)” 

Hence, by using the expression for binomial series, we find that in the neighborhood 

of the origin f(w) = - w-1 + O(i) 

i.e. the function f(w) has a first order pole at the point w = 0 . 

Therefore, the function f(w) is holomorphic in the whole plane slit along the arc 13% 
including the point w = 0~ (where it has a zero order pole with principal part 1 ), except 
the point w = 0 (which is a first order pole with principal part - w-l). 

Furthermore, let us use the following result [S]. Let the function f(ul) be holomorphic 
in the domain D, which is an infinite part of the plane consisting of points located out- 

side the closed contour C, with the exception, perhaps, of the finite points as,..., a,, of 
this domain, and also the point w = 00 where it can have a pole with the principal parts 

Cl(W), . . . . G,(w), G,.Jw) (the pole can be of zero order at the point w = DC, ). 
In this case the formula 

1 
d 

f (4 dw 
2ni w-z = f (2) - G1 (z) - . . . --,,(4--ca3(z) (z2D) (1.30) 

c 
which is the Cauchy formula for an infinite domain D holds. 

Applying the last formula to the function f(w) = W-l[(w - a) (w c ii)f" we obtain 
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RI (4 = -& d I@ - a)(w--)I”~ dw = [(z- a)(z-iI)]” + 1 

c W(W --I) Z ---I (1.31) Z 

Let us shrink the contour C to the slit (4~ along the arc of the unit circle. Let us first 

find the limit values of the radical on the inner and outer edges of this slit. These values 
are calculated quite simply in the case of a slit made along some segment of the real 

axis. The case of a slit along the arc of a unit circle can be reduced to the case men- 
tioned. This is done by mapping the unit circle conformally on the upper half-plane. 
The mapping function is 4-W 

W1=i- 
l+W 

For points of the unit circle w = 5 = eis (- n 6 s < n). These points are transformed 
into points on the real axis by the formula 

wr = ur = tgr/,s 

Hence, it is seen that a slit along the arc Ea of the unit circle in the complex w plane 
passes into a slit along the finite segment [- tg1/2 a. tg1/2 al on the real axis on the com- 

plex WI plane under the conformal mapping mentioned. We find simultaneously that 

1+fi 
U-_a=- 

!+a( 
1 +lQ x,u1 1 -tg+ ) w-ci=-l+wl (1.32) 

Assuming WI -+ IQ, we will consider that on the upper edge of the slit 

(L’~ - tg1/2a +(tg1/2z - ul)ezi, WI + tg’l2a + tg%a + 24 

and on the lower edge of the slit 

w1 - tg1/2a + (tg’l2a - u~)e-~~, wl + tg1/2a -, tg rl2a + 112 

in the segment (- tg1/2 a, tg1/2aI. 

The validity of these relationships is easily seen if the changes in the arguments of the 

complex numbers WI - tg1/2a and WI + tg l/2a are followed as WI --, UI. 

Taking into account the above, we establish by using the transformation formulas(l.32) 
that the radical [(w - a)(~ - a)] ‘h taken on the respective values 

i[(Z - 5)(6 - @I”‘, - i[(a - c)(c - ti)]“a 

on the inner and outer edges of the slit along the arc cfa of the unit circle, or keeping in 
mind that i = + m the values 

-[(P - a) (5 - n)l’l*, rt - a )(5 - 41”’ (f E 3 (1.33) 

Taking into account the values (1.33). let us shrink the contour C in (1.31) to the slit 
aa ( l ). We obtain = 

1 
2ni s 

- 2 [(C -a) (6 - s)]“‘d~ [(Z - a) (Z - *)P 
t (C -z) 

= 
Z 

a 
Hence, applying the Sokhotskii-Plemelj formula, and again utilizing the values (1.33). 

we find that to the left and right of the slit as Z-DO , i.e. as the point Z tends to the 
point e of the inner or outer edges of the slit, the following relationship holds 

*) Since the integrand is on the order of 0 (( w - Cs)“‘) and O((W - a)$, respectively, 
on the ends 5 and a of the slit, the integrals taken over small circles will tend to zero 

asp-o. 
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Therefore, the integral JO*(b) Odefined by (1.27) is 

JO* (6) = l/%i JQG(l-0 

Putting 6 = e’ we obtain the expression for the integral Jo(t) 

JO (t) = - v/z sin */tt (1.34) 

Let us turn to the evaluation of the integrals (1.28) and (1.29). Let us introduce the 
notation 

x 
k (k = 1, 2 ,...) 

a 
We will then have 

Jk* (e) = ‘/% @ [xk (6) + x_k (a))1 
(k = i,2 ,...) (1.35) 

Ik* (6) = - %i l/z [Xk (a) - X-k (a)] 
Let us consider the piecewise-holomorphic functions 

i 
$ @‘,(‘) = 2ni c 

@J - Q) (W - ti)]"%k-l 

dw 
w-z 

(k = 1, 2 . ...) 

Q)_k (2) = & $ 
c 

‘(w - ‘; fIz;)l’b dw 
Wkrl 

where the contour of integration C is as before. 
Let us investigate the analytic properties of the functions 

fk(uJ) = [(w - a) (w - a#” wk-1 (k = 1, 2...) 

where, as before, the radical is taken with the positive sign. It is easy to see that in the 
neighborhood of the origin these functions are holomorphic. In order to clarify the struc- 
ture of these functions for large W, we represent them as 

It is easy to establish, by multiplying the binomial series which are power series expan- 
sions of the square roots entering here, that for 1 w 1 > 1 these functions admit the repre- 
sentation CO k 

f* w = 2 (-- v wk = a (- l)Vnwk-n + H (4 
n=o ?l=l) 

Here N(w) is a holomorphic function at 00 

C, = 5 c,,~P)c,,~“-PlaPcm-P 

p=o 
It is easy to show that 

C* = z, = i C$%,~~n-p) cos (2p - n) a 

2j=o 
Therefore, the functions f,,.(w) (k = 1,2...) are holomorphic in the whole plane slit 

along the arc cSa of the unit circle,except at the infinitely remote point which is a pole 
of order k with the principal parts k 

G,(k)(w) = 3 (- i)‘V&wk-* 
n=o 

(k = 1, 2,...) 
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Similarly, it is easily shown that the functions 

f 
-k 

(I?) = [(u> - n)(~~~ - 41”’ 
&L'l (k= 1, 2 ,...) 

are holomorphic in the whole plane of the variable (L’ slit along the arc oa,with the excep- 

tion of the point w = 0, at which they have a pole of order k with the principal parts 

Taking into account the mentioned analytical properties of the functions fx (w) and 

f-k (w) (k = 1, 2,...) and applying the Cauchy formula (1.30), we find by a method com- 
pletely analogous to that expounded above for the calculation of the integral J,*(a) that 

k k 

x, (a) = f 2 (- l)V#k-n, x_, (a) = f 2 (- l)n+lCngn-k-l (k = 1, 2 ,...) 
n=O n=o 

Using the last formulas, we find expressions for the integrals Jr*(a) and I**(O) from 
(1.35). and then the following expressions for the integrals Jk (t) and Ik (t) from (1.25) 
and (1.86): 

Jk(t)=--&i (-l)nC,sin(k-n+l/~)t 
V2 n=o 

k 
(k = 1, 2,...) (1.36) 

I, (t) = --& 2 (- ljnC,, CoS (k - n + l/z) t 
n=o 

cn = i C*,!P)C,,Z(n--P) cos (2p - n) a (2.?)7) 

p=o 

Before turning to the solution of the integro-differential equation (1.7) under the bound- 
ary conditions (1. 8). let us evaluate the coefficients C, in the formulas presented above. 

We find directly from (1.37) 
c, = 1, Cl = cos a 

The remaining coefficients C, are easily evaluated as follows. Let us consider the 
function h(w) = [(w - a) (w - E)]“’ 

where the radical is taken with the positive sign. The single-valued analytic branch of 

this function is thereby selected in the plane slit along the arc c~a of the unit circle. It 
is easy to show, as above, that a 

h(z) = - 2 (- i)VnuP (I U’ I < 1) (1.38) 

71=0 

h (w) = w 5 (- I)” !?< (I w I > 1) (1.39) 

n=O 

Let the counter-clockwise direction be considered the positive direction on the unit 
circle. Let h, (a) denote the limit values of h(w) when the point IU tends to the point d 

on the unit circle from the left, and h_(a) the limit values of this function when the 
point IL’ tends to the same point G from the right. Let us form the difference h+ (a) - 

-h_ (o).Since the function h(w) is analytic on the whole unit circle except the slit along 
the arc da, then this difference will vanish for all points (r of the unit circle not belong- 
ing to the slit. Let us find the values of this difference: on the slit along the arc fin. To 
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do this, let us utilize the values (1.33) of the radical on the inner and outer edges of the 
slit. We obtain that 

h, (a) - h_ (0) = 2 ~(a-- a)(a-ii) (a E aQ) 
Therefore 

On the other hand, we obtain from the expansions (1.38), (1.39) 

O3 (-I)% 
h+(a)--_(d= -[ 5 (- 1rqp”+ 2 *] 

n=o n=o 

Comparing the expressions obtained for h, (a) -h_(a) by the two methods, we discover 
that 

2 V(e -Q)(Q--6), Q E 6Q 

6, aT da 

Putting o = e”, a = ek we will have 

k=-co 
where we have used the following notation: 

d, = Co - cl, 

d, = (--1)k C, (k = 2,3...), 

Furthermore, let us expand the function 

dl = C, - Cl 

6, (--l)k+lCk+l (k = 1,2,...) 

q(t) in a Fourier series 

P (t) = 

(1.41) 

5 qkeikt 

k=--m 

(1.42) 

For the Fourier coefficients 

we obtain the expressions 

1 n 
qk = K s q(t) e-‘k’dt 

-7-C 

q _ pk_2 (cos a) - pk (cos a) 
k- 2k-1 

(k = 0, _L 1, f 2,...) 

where Pa (CO9 Ct) are Legendre pOlynOmiak. 

Substituting its Fourier series expansion (1.42) into (1.40) instead of q(t) comparing 
coefficients of eQt , and utilizing the notation (1.41), we find 

ck = (_ ilk 'k-, tcos;i - rk (co9 a) 
(k = 2, 3,...) - 

Let us note that the coefficients C, and C,are not themselves determined by this means; 
only their difference has been determined. 

We therefore have 
Co= 1, Cr=cosa, C, = (_ *),, P,-s(cos a) - Pn (~0s a) 

2n - 1 
(” = 2, 3,...) (1.43) 

Now the solution (1.23) of the integro-differential equation (1. ‘7) with the boundary 
conditions (1.8) can be represented after the expressions (1.34) and (1.36) have been 
substituted for the integrals Jo (t), Jk (t) and Ik (t) , as 

q’(t) = 
P cos ‘1% t 21Ly sin l/a t 

n )/2 (cos t - co9 a) - 62 (COS t 
- 

- co9 a) 
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- jj [pk-(-i)k$]i (--1)“C,cos(k-n$-‘/,)t} (-a<t<a) (1.44) 
k=l n-0 

where the coefficients c, are defined by (1.43). 
According to (1.9) we finally obtain the following formula for the contact stressr (2) 

under the elastic laps: 
,r (5) = ;J)$zj = 1 Pcos(nxj 21) 

- v/z (CO9 (rcz / 1) - cos (na / 1)) 
2nhy sin (512 / 21) An 

- 1 v2 (cos (atx / 1) - cos (na / 1)) - 1 1/2 (co9 (nx / 1) - co9 (na / I)) 
X 

cc k 

2 akz (-l)“C,sin k-n++]- (1.45) 
k=l 72-O 

- 5 [s,-(-l)*q]i (-l)nC,cms[(k-..+j~]} (--<<<aa) 
k=l 7l=O 

Therefore, the law for contact stress distribution under the elastic laps glued to an 

elastic half-plane and repeated periodically with period 21 is determined by (1.45) if 
the coefficients a kand fi ,, are known. As will be proved in Sect. 3, those singularities 
which characterize the state of stress of the laps near their ends are explicitly extracted 
out in this formula. It will be proved in Sect. 2 that the definition of the coefficients 
a a and fik reduces to the solution of two separate infinite systems of linear algebraic 
equations with bounded forcing terms. It will be shown there that these infinite systems 

of linear equations will be completely regular for 

A<& h ‘_ Gal 
srn a 2n (I- vz) hE1 

and quasi-completely regular for h / sin a > r/s& . Therefore, it is possible to rely on 

the theory of regular and quasi-regular infinite systems of linear equations with bounded 
forcing terms, and to assert that the coefficients okand pa can be determined to any 

required accuracy. 

Let us note that when h = 0, the elastic laps are replaced by rigid ones, i.e. by 

stamps, and (1.45) reduces to the known formula from p]. 

2. Derivation and inve8tigrtion of the lnfinlte ayrtrmr of lin- 
88) 6qllatlOPBr Let us return to (1.44) in order to derive the infinite systems of lin- 

ear equations in the unknown coefficients a k and p R. Substituting its Fourier series expan- 

sion (1.15) in place of cp’ (t) in this formula, and keeping in mind that a0 = P / a, 
we hence obtain 

sin(k-rr+l/a)t - 

- 5 [pk-(-~)k$] i (-l)"C,cos(k--+fY,)t) (--<<<a) (2.1) 
k=l 7k4l 
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Now, let us note that the sum of the series on the left side of the last equality should 
vanish identically in the intervals (-n, a) and (a, n) , as is obvious from (1.16) and 
(1.17). Therefore, for the Fourier series expansion of the whole right side of(%l)def 

only in the interval (-a, a), it must be continued in the remainder of the interval 
(-n, n) by a function identically zero. Taking this fact into account, let us introduce 
the functions 

-sc,<l<--a 

(p=O, 1, 2,. . .) (2.2) 

a<t<n 

0, -lt,<t<---a 

hp fff = 
i 

sin (P + “/a) t 
v2 tcos t _ cos aj I -7 a G t < a (p=O. 1, 2,. * .) (2.3) 

I 0, a<t<n 

continued periodically with period 23% over the whole real axis. 

By utilizing these functions (2.1) can be written as 

-&-+ jj m(f&cosmt -ua,sinmt) = xv2~~,“~“~OSa, - 
Tll=l 

2hy sin I/Z t -... 
yr2 (cos t - cos 3) 

--h jj cck i (-1)“C,&l(+- 
I k=l n=* 

(2.4) 

Furthermore, the functions g, (t) and h, it), which are even and odd respectively, 

are expanded in the Fourier series 

g,(f) = q + jj c,%os mt, hp(t) = i ~*(~)si~rnt (--<tqzn) 
m==l rn=l 

whose coefficients are defined, according to (2.2) and (3.3) by 
CI 

cm(p) = 2 s cos (p + .‘/a) I! cos mt (& 
JX o v2(cost-cosa) 

trn = 0. 1, 2, * . *) 

p: 

D,(P) = _?._ aiu(p+Wtsinmt dt 
n s o v/z (co9 t - cos a) 

(m;l= $, 2,. . _) 

Utilizing the formula [6] d 

p, (cos a) zzz $5 cos (v + w t 
o v2 f&s t - co9 a) 

dt (O<a< 4 

for the Legendre function of the first kind of order v we obtain at once 

Cm(p’ = l/, [P,, (co9 a) + Ppam (cos a)], .Dm(p)=l/s [Ppwm (co9 a)-P,+,(ima)) 

Therefore 
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coP 
I!?, (t) = 

p, (y a) 4 z p+m @OS 4 ; P,, Ps 4 cos mt 
(p=o, 1, 2 I...) (2.5) 

,,,=I 

cc p,-m 4Jt) = 2 
(cos a) - P,, m (cos a) 

2 sin mt (2.6) rn=l 

Substituting their Fourier series expansions from (2.5) and (2.6) for grr-n (t) and 
hk--n (t) , respectively, in (2.4), we obtain after simple calculations 

i m(~,cosmt--g,sinmt)= +s [Pk-(-l)kTJ x 
m-1 k=l 

x i ( -l)n c,Pk-,, (cos a) + f 5 pm (‘OS a) ; ‘-,’ (‘OS OT) COS ,,‘2t + 

n=o m=1 

O3 
-c 2hy r, Pm (Cos a) - P_, (cosa) 

2 sin mt - 
m=i 

_ h { i [s uk i (_I)” C, Pk-m-n(CoS a); Pk+~-n Ccos a) ] sin mt _ 

m=l k=l ?I=0 

_ i [i (p,_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
n&=1 k=l n=o 

A comparison of the coefficients of cos ??tt and sin mt on both sides of the last 
equation results in infinite systems of linear equations 

;, Ipk - C-1)“$] i (-1y C,Pk+ (cosu) = 0 (2.7) 
n=o 

P m-p, = y Pm (COS a) + p_m (COS 2) -c 
2 (m= 1, 2,. . .I (2.8)‘ 

+A$ [&-(-I)‘+$ (_ 1 ),, c, 

k=l 

’ k+m-n tcos a) ; Pk_m-,, @OS a) 

n=o 

mu, = AT [P_, (cos a) - Pm (cos a)] + (m = 1, 2,. . .) (2.9) 

,+ h 5 aL i (_l)nc, Pk-m-n(CoSa)~Pk+m_n(Cosa) 

k=l n=O 

It is easy to note that the infinite system (2.8) corresponds to the skew-symmetric 
part of the contact stress under the elastic laps, and the infinite system (0.9), to the sym- 
metric part of the contact stress. 

Let us prove that k 
2 (-l)nC,Pk_,(eosa)~O for O<a<n; k=*,2,,..(2’10) 
n=o 
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It will hence result directly that (9. ‘7) will be satisfied identically for any coefficients 

Bi, * and therefore, imposes no constraints on these coefficients. 

In order to discover the validity of the identity (d. 10). let us note that according to 

(1*26)and(1*36)1 OT I/cos.q_~osasinkaq 

zi s sin l/z (s - t) 
--bL 

ds = _& i (- i)“C, cos (k - n + l/z) t 

n=o 
(k=1,2,...) (-u<t<a) 

Multiplying both sides of this latter by 
2 

* )/cost-COSZ 
and integrating over 1 

between - a and a, we obtain 

1 a t=a k 

c 3.. 
sin ksK (t, s) ds = 2 (- l)W, P,_, (cos Cz) (0 < a < 4 

---Ix t=-a n=o 
(k = 1, 2,...) 

where the kernel K(t, s) is defined by (1.13) and (1.11). Keeping in mind that 

K(- a, S) s K(a, s) E 0 (- a < s 6 a) 

we obtain the identity (9.10) from this latter equality. 
Let us note that the equality (i?. 7) expresses the equilibrium condition of the elastic 

laps. Indeed, by integrating both sides of (1.44) between - a and cz and utilizing the 

boundary conditions (1.Q we arrive at (8.7). On the other hand, if the expansion (1.15) 
is substituted in place of v’ (t) into the same formula (1.44), and taking into account 
that here a,, = P / rc, and then both sides are integrated between - a and a, we will 

obtain 
25 P ksinka=P(i-a/n) (2.11) 

k=l 

It follows from the above, that (2.7) and (2.11) are equivalent. Therefore, (2.11) is 
also an identity, and imposes no constraints on the unknown coefficients. 

Let us now try to satisfy the boundary conditions (1.8) by starting from the expansion 

of v(t) defined by (1.21). We then obtain (2.11) as well as the following equality : 
M 

7=+--2 akcoskx 

k=l 

(2.12) 

This latter equality permits the determination of the constant Y if the ak are known. 
Therefore, the relationship (9.13) will be some equation from which the constant Y can 
be determined. 

This constant has a simple physical meaning. To clarify this meaning, let us integrate 
both sides of (1.19) in the interval (-a, n) and let us take (1. ‘20) into consideration ; 
we hence obtain 

7 =2+[P(n--) + 
4 1 cp (9 dt 

or putting t = nz / 1, la / fl = a 

On the other hand, according to (1.1) 

(2.13) 

du(l) (1) - * (4 - cp (JW) - =e* ---- 
dx h& h& 
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Hence 

u@)(x) = C + & 

The constant C characterizes the rigid displacement of the system of laps-half- 
plane. It follows from this last formula that C = I (- a),hence we will have 

u(l) (a) - u(1) (- a) = &_ 
1 

Substituting herein the expression for the integral from (8.13). we obtain 

24(l) (a) - &) (_ a) = 12^1 + P) ’ + Pa 
hE1 

We hence conclude that the constant y determines the displacement of the right end- 

points of the elastic laps relative to the left ends of these same laps. Its approximate 
expression will be given in the next section. 

Let us turn to an investigation of the infinite systems of linear equations (2. 8),(2.9). 

Let us represent these systems as 
03 

k=l 

co 
(n=1,2,...) 

b, = em + h i?i &d% 

(2.14) 

(2.15) 

where 
k 

k=l 

A ’ 2 ('--l)nC~(Pk-m-n(cos~)--k+m-n(cos~)] (m,k=i,2,...) mk = 2k 
T&=0 

Bnlk = & i (--I)“& [Pk,,,,-n(cosa)-+ Pk-m-n(COS@] (m, k=l, 2,. . .) 
n=n 

a, = mu,, b, = mf.&,, d, = P_, (cos a) - P, (cos a) (m = 1, 2,. . .) 

,,, = & [P,(COSa) - &,(COSa)] - 2Ph i (-jj’&k e (m = 1, 2, . . .) 
k=l 

Let us note that the infinite system (2.8) can be represented in a form in which the 

coefficients br,- (-l)k 2P in (1.45) for the contact stress, will be the unknowns. An 
investigation of this infinite system will be no different from an investigation of the sys- 
tem (2.15). 

Let us turn first to the infinite system (2.14). To investigate it, let us estimate the sum 

S,=hjj [Arnrj (m= 1, 2, . . .) 
k=l 

We have 

&=+i $1; (-l)~Cn[Pk-m-~(COS~)-PPh_rm_n(COS~)]I~ 
k=l Tk=Cl 

1CnI(Pk-m-n(COS~)I+ ,j$$ IC,IIPk+m-n(COSa)l]= 
k=l ‘k=O 
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3. =- 2 ICnijPk+m-n(cosa)I+ 

_t- ; iPk-,,,~u)i 
+ 

O” i 

k=l k31 
7 i 1 &a 1 1 Pk-m-n (co9 a) I] 

n=1 

Interchanging the orders of summation in the repeated sums, we obtain 

+ i , c, t 5 i Pk+?+~feos a)f + i , c,, i 1 pk-m-;(cos a)l] 

Tt=l k=n 71=_1 k=n 

Introducing the notation 

O” I pL+-m (cos 4 I O3 h&)=~ 1 p,-., tcos d 1 

k=l 
k , T-&+=r, k 

h-=1 

A bo (q = .j 1 Pm+PfcOS a) 1 , 
m 

Pfn 
p=1 

(m,n=1,2,..,) 

we represent the last inequality as 

s,<+&)f T.-,(a)+- 5 IC,l(Rfmn)(a) t R%(4)] (2.46) 
n==l 

It can be shown that the quantity S,,, will satisfy a condition for which the system 

(2.14) is completely regular. 
Let us first estimate each sum in the inequality (2.16) separately, To do this, we use 

a known result of [7]: the inequality 
2 ‘/z 

I Pn(cos4 I< -;i- 
( > 

i 
1/-Y- 

n snr a (O<a<n; n-1,2,...) 

holds. Let us note that the constant m cannot be replaced by a lesser one. For 
simplicity of the computations and of the formulas obtained later, let us replace this 
constant by unity, thereby asserting that the following inequality holds 

i 
jP,(cosa)f<j/----- nsura 

@<a<=; n=l, 2, . ..) 

Utilizing this inequality we find 

Were &z) (;2. > 1) is a Riemann function [6, 81. 
Thus, the following inequality is valid : 

(2.17) 

(2.18) 

In order to find a more accurate estimate for the sum T, (a) let us note that 



808 N. Kh. Arutiuaian and S. M. Mk~itarian 

Computing this latter integral ( [S]. formula 2.246), we obtain 

Tm (2) < v (m- 1, 2, ..,) (2.19) 

It is easy to show that 
LIn V/m+V-t 

.::$f, ‘Y’m+l- ‘t/m =O 

Therefore 

(m= 1, 2, . ..) 

After performing elementary calculations, this latter inequality becomes 

m + 1 < l/z (1 + ch A I/q 

Substituting herein the power series expansion of the function chA I/m, we arrive at 

the inequality A2 ‘\ 

( ) 

A4mz A@rna -- 
4 1 m+m+26!+...w 

It is hence seen that for nonnegativity of the right side it is sufficient to consider that 

$$A2 - $20, or A>,2 

Therefore, the inequali~ 

(2.20) 

has been established. 

Let us now estimate the sum T_, (a). Using the formula P_, (~0s OS) = P,_, (cos a) 
known in [6], as well as the equality P,(cos a) = 1, we represent the sum T_, (a) as 

follows M--2 

T_,(z)= 2 (m>3) 
h=l k=nl+ 1 

Let us replace k - m by k in the second sum on the right, and let us then apply the 

inequality (z&l?) to the first two terms, we hence obtain (2.21) 

Furthermore, let us estimate the sum 

To this end, let us note that 

We have for the second sum on the right side of inequality (&S) 

g&k+:) fi ‘h+y<&; J&i 
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or after evaluating the last integral ( 161, formula 2.246) 

Using the deduced inequality, we obtain from (2.Z1) 

Utilizing the inequali~ (2.80). we obtain from (2.Z) 

3 + 5 (%) 
T-?n w<+ + F (m = 3. 4, . ..) 

A separate examination of the sums T _1 (a) and T_, (a) leads to the inequalities 

T-lW<i + ‘5 (g/2) 
v r2(=,<L f (%) 

sin ’ 2 + )/sin 
A comparison of the last three inequalities shows that 

r_m(1)<$+3$-E) (m==1, 2,...) 
srn a 

(2.23) 

By methods completely analogous to those elucidated, we obtain the inequalities 

Vm+i+dm 
Vm _ dna 

> 
(m, 8 = 1, 2, . ..) 

(2.24) 

R$? (~1) < (m, n=f, 2, . ..) (2.25) 

(2.26) 

Finally. by using (2.17) we obtain estimates for the coefficients C, 

w2i4 i+v& 
( > 

1 
* IC,l< 1/& (n-q% 

The latter inequalities permit us to write 
(n-3, 4, . ..) 

(2.24) 

n=1 

Taking account of (2.18),(S.~3),(~.~5),(8.57) and (‘2.28) we find from (2.16) 

4-n< h * 
sin-z- f 

-J&+131+ 171-t 
( 

~)5($)+365”(~)](m=l,2,...) 

In order for the infinite system of linear equations (2.14) to be completely regular, 
it is necessary to satisfy the conditions (93 
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Sm<6< 1 (m= 1, 2,. . 

which results in the infinite system (9.14) being completely 
satisfying the condition .^ 

) 
regular for values of h 

& < 36 [+ +- 131 + (171 + -+) 5 (+j ca (+)I-’ 

Substituting I; (a/s) = 2.612 [S] in the right side of this inequality, we represent it 

after simple manipulations as 
-L<& 
sin a 

(2.29) 

Therefore, the infinite system of linear equations (2.14) is completely regular under 
the condition (2.29). 

The proof that the infinite system of linear equations (2.15) is also completely regular 
under the same condition (2.39) is no different than that presented. 

For other values of the parameter h the infinite systems (2.14) and (2.15) are quasi- 

completely regular. Indeed, after some simplification of the expressions in the right sides 
of the inequalities (2.19), (z&22), (2.34). (2.26) and (2.28), the inequality (2.16) becomes 

(nl=3,4,. .) (2.30) 

Since lim G, = 0 as m -+ cm, the right side of (2.30) can be made arbitrarily 
small for any n for sufficiently large m, This circumstance certainly permits the assert- 
tion that both infinite systems of linear equations (2.14) and (2. i5) are quasi-completely 
reguIar for 

&& 

where a number N can be given exactly for which the mentioned systems start to be 

completely regular. 
Since the forcing terms of the infinite systems of linear equations (2.14) and (2.15) 

are bounded as a set. or more accurately, tend to zero as the velocity 0 (m-‘/2), then 
according to the theory of completely regular and quasi-completely regular systems 191. 
they have unique solutions in the class of bounded sequences. These solutions can be 

obtained by successive approximations, by starting from any bounded initial values in 
the set. They can also be obtained by the method of reduction. After the a Rand b k 
have been determined, the coefficients a&and p k can be found by means of the formulas 

If c$’ and @I are approximate values of the coefficients uk,and b k which approach 

them as n + 00 then the approximate values 01111’ and f$) of the coefficients ak and 
pk can be-determined from the formulas 

up 
aktn) 

ZZ------, 
bxfn) 

k 
&W) z2.z - 

k 

Let us note that BP) and $” can be successive approximations or solutions of the 
truncated systems of a finite number of linear equations when the method of reduction 
is applied to the infinite systems (2.14) and (2.15). 

In conclusion, let us note that more exact estimates could he obtained. However. this 
would complicate the structure of the final formulas. 
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3, Inverti-grrion of the 8tate of 8tfb88 of the elastic laps, We 
precede the investigation of the state of stress of elastic laps by elucidating some results 

which will permit, on the one hand, giving a foundation to the formal operations per- 
formed above, and on the other, verification of the validity of the analytical Fourier series 

apparatus utilized here. Firs&let us explain the question of the convergence of the tri- 
gonometric series encountered in the previous sections. Second, let us examine the fol- 

lowing important question. The coefficients ~&and &, which are used to form the trigo- 
nometric series for the functions q)‘(t) and cp (t) are determined from infinite systems 

of linear equations. There is no advance guarantee that the coefficients ak and & thus 

determined will be Fourier coefficients of some function with specific properties. Ques- 

tions of the existence and determination of functions having a previously assigned 

sequence of numbers as the sequence of Fourier coefficients are among the known trigo- 
nometric problems of moments. However, existing criteria from this area are unsuitable 
in practice since they do not permit any verification in specific cases as to whether for 

a given sequence of numbers such a function is of a definite class which would have this 
sequence of numbers as its Fourier coefficients, The clarification of these questions for 
the considered trigonometric series turns out to be elementary and based on the estimates 

of their coefficients. 
Let us proceed to estimate the coefficients. To do this. we write the infinite systems 

(2.14), (2.15) as 

(3.9 

8, =: e,m.‘~~-6 -f- A 5 Bmk ($.)“d& (3.2) 
k-1 

7m = arnm%-~ I ma/t-~ & 
lnv 8 m = b,m’ft-8 = m’W &,, (m=i, 2,. . .) 

and 6 is an arbitrarily small positive number. Let us estimate the sums 

Ym - h 5 1 A,, 1 (+j”‘” (m= 1, 2, . . .) 
k=l 

We have 

Taking into account (2.30), we can write 

Vm<3F&y Cm (m= 3, 4, . ..). (3.3) 

Using L’Hopital’s rule, it is easy to show that 

Vn+,V~ =O 
y-&Y-- JGi 

(3.4) 

Taking account of the last equality and using the expression for Gm from (2.311, we 

conclude that lim V, = 0 for m -+ 00 (3.5) 

In order to obtain an estimate independent of m for Vm , let us note that because of 

(3.4) 
-&n 

Y’m+l+VZ 
)Im+l-jfZ ‘R 

(m= 1, 2, . ..) 

Hence, as in the derivation of the inequality (2. ZO), we obtain 
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fpm’:8 pkm2kS 

+ “yq-- f .‘. + Z.(>k)! +.,. (LO) 

It is easy to see that 
K”” ,ai;s K2h‘mQq 
~ ~ 
2.(2k)! > 2.(S)! (m = 1, 3, . ..). q =: E (6-l) 

Here E(z) is the integer part of the number r. Let US select k so that 
@mWr 

2.(Zk)! > m 
(m = 1, 2, . ..) 

It is evidently sufficient to consider k = q. Therefore, if 

then the inequality (3.6) is satisfied. Therefore 

-1_,, I/m+1+?/m 
,,LS m_ VK dL= I2.(2g)!I’iZT (m = 1, 2, ~..) (3.7) 

Utilizing the inequality (3.7), we find by using (2.31) (*) 

V, < hV / V/sin a, v = 3 (L I/g+ 4 I/z+ n + 3/s 1/z) (M=I, 2,. . .) (3.8) 

Putting 
0 Z=--E_- 

V sin (3.9 

we find that 8 < 1 if ?L satisfies the condition 

(3.10) 

Therefore, if condition (3.10) holds; then the infinite system (3.1) is completely regu- 

lar, but in the opposite case it is quasi-completely regular, as follows from (3.5). This 
assertion is evidently valid for the infinite system (3.2) also. 

Furthermore, it is easy to find that 

< ?b ] y J m+s 1 d, 1 + MV, (m= 1, 2, . . .) (3.11) 
The fact that 1 ‘)‘&I < M (k = I$,.. .> has been utilized in deducing this inequa- 

lity since according to what has just been proved, the infinite system (3.1) of linear 

equations is completely regular or quasi-completely regular, and therefore, has a unique 
bounded solution. 

Taking into consideration the inequalities (2.17) and (3.5), we find from (3.11) that 
Iim ym = 0 for m + 00. Analogously, it can be shown also that lim 6, = 0 as 

m 4 03. 
This latter circumstance permits the assertion that 

1 a,=0 - ( > m=lz-s 7 Pin = q-7&) 
This means the following formulas also hold 

(3.12) 

3 For m > 3 this inequality is obtained from (3.3). But it also holds for m= i,2- 
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Since the coefficients r+,and &are quantities of the mentioned orders, the trigono- 

metric series in (1.19) converges absolutely and uniformly. There results from just the 
uniform convergence that this trigonometric series is a Fourier series of some function 

F (t> - l/r Pt /ax. We denote it by cp (t) - l/s Pt / n in the interval (---ix,. a) . 
Therefore,the function cp (t) (-a < t < a), continued into the interval (-71, n) by 
means of (1.20). is represented by the Fourier series (1.23). 

Let us investigate the convergence of the ~igonome~ic series obtained by formal dif- 

ferentiation of the Fourier series (1.22). i.e. the series in the right side of (1. X5), 

The coefficients u kand @ k of this series are determined, as has been shown, from the 

infinite systems of linear equations (2.8). (2.9). whose derivation is based on (2.1). 

Therefore, convergence of the trigonometric series (1.15) is equivalent to convergence 
of the series in the right side of (2.1). 

Furthermore* let us introduce the notation 
M 1. 

m(t) = 2 ak 2 (--1)” cn sin (k - n + t/s) t - (3.13) 
k=l n=o 

M k 

y(t)= 2P 5 (+ i (-~l)V,cos(k--n+fll& 
k=l Tl=O 

(3.14) 

Taking (3.12) and (2.28) into consideration, we discover that the series (3.13) conver- 
ges absolutely and uniformly in the segment [ -a, a] and therefore its sum @ (t) is a 

continuous function in this same segment. 
Returning to the series (3.14). let us intergange the orders of summation, and then let 

us use the known formulas [6] 

After having performed elementary calculations,(3.14) becomes 

Since the number sequence r&k = (- 1)” k-’ will be a sequence of bounded varia- 
tion, i. e. Pa,]+ ]A%/ + /AU-~\ + . ..<m (ASA = gk - ~-1) 

Hence, the series (3.15) converges uniformly [lo] for e < ItI < X (e is an arbitrarily 
small positive number). For t = 0 they evidently simply converge. It follows from the 
above that 
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On the basis of the last inequalities and inequalities (2.28) we see that a series of the 
form 

converges absolutelv and uniformly in the interval (--a, n), and therefore, also in the 
segment -CZ < t < * . Hence. the unction UT (1) is continuous in the segment 

I-a, al. 
Therefore, it has been proved that 

q’(t) =I q-t_ jj k(P kcoskt - aksinkt) = x (t) (-a<t<a) 
k=l 1/2(cost-cow) 

(3.17) 
Here the function 

x (t) = Pn-r cos i/st - 2Ay sin l/Bt - 31, IO (t) - Y (1)l 
will be a continuous function in the segment [--a, aI . 

It follows from (3.17) that the function 9’ (t) is absolutely integrable in the interval 

(-a, a) , This yields a foundation for the assertion that F (t) from (1.18) is an abso- 
lutely continuous function in the interval ( --3X, n) . But according to (1.20), F (t)z 
f cp (t) for --a < t N< a. Therefore, the function Q, (t) f-a < t <a) will also 
be an absolutely continuous function represented by the Fourier series (1.22). There 

remains to utilize the following results of [lo] to see that the series (1.15) is a Fourier 
series (*) for p’ (t). The trigonometric series obtained by formal differentiation of the 

Fourier series of an absolutely continuous function is the Fourier series for its derivative. 
Therefore, a foundation has been given for the Fourier series of the function g, (t) from 
(1.22) to be differentiated term by term, and for a Fourier series representing the func- 

tion cp’ (t) to be obtained again. 
Turning to the investigation of the state of stress of the elastic laps, we recall that 

the contact stresses are determined by (1.44), or more exactly, by (1.45). This formula 
has been represented in the form (3.17) with clearly isolated singularities which charac- 
terize the state of stress of the elastic laps near their ends. It is seen from this formula 
that the contact stresses at the ends of the elastic taps become of integrable order at 

infinity. Simultaneously. the presented analyses permit the assertion that the law of con- 

tact stress distribution under periodically repeated laps has an analytical structure such 
that the singularities inherent in the state of stress of the elastic laps near their ends are 
of the same kind as in the case of periodically repeated rigid stamps. Therefore, the 
assertion that singularities characterizing the state of stress of the elastic laps near their 
ends are explicitly extracted in (1.44). which has been expressed in Sect. 1, has now 
been given a complete foundation. 

*) More exactly, we speak here of a Fourier series for the function f (t) defined by(1.6). 
which agrees with the function 9,’ (t) in the interval (- CL, a). This remark also refers 
to the functions P(L) and 9 (t). 
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Let us note the following. The coefficients CL kand 8 A in (1,44) and (3.17) are deter- 
mined by successive approximations or the method of reduction from the infinite systems 

(2.8) and (2. S), r?prted in the form (2.14) (2.15), or (3. I), (3.2). If the successive 

approximations 0$ and I$) which converge to a, and b t,, respectively. as n 3 CO , 
are substituted in (1.44) or (3.17) in place of a, and a~ , then a certain functional 
sequence is obtained 

31n(O = 
Pn-’ cos l/9 t - 2kr sin l/s t - h [a>, (t) - Y(t)] 

u’2 (cos t - cos a) 
(-cz<<<<) (3.18) 

a),(t) = 2 up 

k 

2 (-~)nC,sin(k-n+l’/t)t- 
k=l k=o 

co k 

- 2 p$=’ 2 (-~)nc~cos(~-~+~/s)~ (n=i,2,...) (3.19) 
8=1 n=o 

Let us prove that the sequence xn (t) tends uniformly to the function cp’ (t) as n + 00. 

It is easy to see that such a proof will reduce to the proof of uniform convergence of the 

sequence Q>, (t) to CD (t) as n 3 oo . 
Proceeding to this latter proof, we note that we can put 

r,@’ 
o&n) =: - 

SK’“’ 
k”/,d ’ 

pp = --..- 
ka 8-8 (3.20) 

where ‘#I and 6f) are the successive approximations which tend to the solutions y k 
and ak of the infinite systems of linear equations (3.1). (3.2) as n w 00. 

We have 

(-a BtBa) 

Furthermore, it is necessary to obtain an estimate for 

(3.21) 

IYS,“’ - Yk 1 and 1 Sk”’ - 6k /*To 
do this, let us use the Banach principle of contracted mappings [ll]. This principle per- 
mits establishment not only of complete regularity. or quasi-complete regularity of the 

infinite systems of linear equations (2.14), (2.15) or (3. l), (3.2). but also the estimates 
we need. In this connection, let us present some elementary information from functional 
analysis [l 11. 

Let us introduce the set E of all bounded number sequences x = & Ez,...). This 
means that I& 1 Q X, for all i, where XC* is a constant dependent only on the element 
2. Let x= {Et) and y= (qJ belong to g. Let us introduce a metric by means of the 
equality P(G Y) = “YP cei - 1111 

As is known 1111. the set .8 with the metric introduced by such an equality becomes 
a complete metric space. It is called the space m of bounded number sequences, 

Let us consider the linear operator y = AZ in the space m which has been given by 
usinn the eaualities OD 

(i = 1, 2, . ..). Cbi} E m 
k=l 

Let us assume that the infinite matrix 11 Utl,~~&=i is such that (Et) E m, then f~) E m 
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also, i. e. the operator A transforms an element of the space m again into an element 

of the same space, We have 

k=l 

Let us assume that 

lek 
(1) - Eke) 1 < 

(3.23) 

k=l 

for all i. If condition (3.23) is satisfied, then according to the Banch principle of con- 
tracted mappings it can be asserted that the operator A, given by (3. -2‘2). has a single 

fixed point x0 in the space m such that Ax, = so, The point zO can be found by succes- 
sive approximations, starting from any initial element X. These successive approxima- 

tions converge to z. in the metric of the space m. In other words, upon compliance with 
condition (3.83). the infinite system of linear equations 

co 
(3.24) 

k=l 

in the space of bounded number sequences has a unique solution (Es), which can be 
obtained by successive approximations starting from any initial element from the same 

space, * in other words. the system (3.H) is completely regular. 

Let us note that an estimate of the closeness of the nth approximation zn to the fixed 
point z,, is hence given by rhe formula 

,n 

P (“,v 
kl 

In case the conditions x0)= i__B P(X* AX) (3.25) 

k-l k-l 

are satisfied instead of condition (3.23), the operator A defined above can be examined 

in the subspace Ii, of the space m, which consists of element whose first N components 
are zero.In this caseSagain on the basis ofthe %anaeh princip$e,it can be asserted that the 

operator A has a single fixed point in the subspace R, , i.e. the infinite system (3.24) 

is quasi-completely regular. 

Therefore, the classical theory of completely regular and quasi-completely regular 
infinite systems of linear equations is included in the general scheme representing the 
Banach contracted mapping principle. 

Now. let us utilize the estimate (3.55) to the infinite systems (3.1). (3.2). We have 
n 

eR 
p pn, 20) = &P (X* Al-u, p (I!,” Ilo) - 1-_8 P (Z Am. 

and As and A2 are operators corresponding, in the above-mentioned sense, to the inf&ite 
systems of linear equations (3. I], (3. P), respectively, 
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Returning to (3.2 1). we find 

(3.26) 

where 
P = max (PI, b2), PI = P (X, 4X), t4 = p (X, 4 X) 

and 8 is defined by (3.9). 

(3.27) 

Using the inequality (Z.PS), we obtain from (3.26) 

The inequality (3.28) shows the validity of the above-mentioned assertions. 

Therefore, for h satisfying condition (3.10). the sequence ‘& (t) tends to the function 

g’(t) uniformly in t (-a < t < a) as n -+ ~3. It is easy to show that this assertion 

holds even when k does.not satisfy the condition (3.10). However, we shall not consider 

this point. 

Let us examine the expression 

(--(I<<4 

which is the absolute difference between the approximate and true expressions for the 
contact stresses under the elastic laps. In order to estimate this difference, let us note 

that the function [2 (cost - cos a)]-“~ defines those singularities which are inherent 

to the contact stresses near the ends of the elastic laps. It is hence natural to judge the 

closeness of the approximate expressions Xn (t) of the contact stresses to the true q’(t) 

by estimating the difference lCDn (t) - <f, (t)]. We can write this estimate, represented 

by (3.28). as (*) 

Let us now borrow the estimates pI and !~s from (3.27). It is known that the selection 
of the element X is arbitrary and affects only the rapidity of convergence of the succes- 

sive approximations. Let us take the null element as X for the case of the operator d, 
or the infinite system (3. I). Then 

PI = “iP Ml d-S/ P_~~(COSCL)-P,,~(COSa)j 'i < 

<k/r/ jSUpm’1p-8 1 P_, (cos x) 1-f sup ?H1 4 IP,, (cos 3) 1 } < 
m m 

we take X = { (- l)YZP} in the case of the operator A, or the infinite system 

(3.2). we obtain p (1 + V% 
cosa)+ P_ln(~o~@) I< zrE I/sin% 

Therefore, the following estimates hold : 

(3.30) 

* ) In practice, we can consider 6 = 0. 
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Hence, it is seen that the constants pt and pa, and therefore, also p, depend on the 

quantities h, 1 y 1 and P. 

Considering the nth approximations (y$,“‘> and { 6?‘), which are constructed from 
the infinite systems of linear eqautions (3. I), (3.2). respectively, by starting from the 
above-mentioned initial elements X, we find (c~r’j and (fir’} from (3.20). We then 

form the functions Xn (t) and CDD, (t) by means of (3.18), (3.19). These functions 
define the approximate expressions for the contact stresses. How close they are to the 

true expression for the contact stresses is seen from the inequality (3.29). This inequality 

shows that sup [(D, (t) - @ (t) 1 b ecomes less and less for t E (- U, a) as the 

number n of the successive approximations increases. 
Let us consider the first approximation in rather more detail. We find for the first 

approximations (e:)} and ( S$,r)} from the infinite systems (3.1). (3.2) 

c((kl) z X@‘!z-s [P_,(cosa) - P,(cosa)] 
(k--1,2,...) 

&?’ zzz $-k’~~-s [.P,(cosa) + P_,(cosa)] 

and therefore, according to (3.20) 

apL_ AT P_k [COS a) - P_k (COS a) 

k 
, ~$1)~ _& pk@oS a) ikp-k lcos a) (k =: 1, 2, ..,) 

From (2.12) we find the approximate value (in a first approximation) of the con- 
stant y 

,=,[,_,,kjJ P-kb’Sd;Pk(coSa) 

1 

-1 

cos ka (3.31) 
k=l 

Therefore, the contact stresses under the elastic laps, determined by (1.45). can be 
evaluated in a first approximation by means of the computational formula 

z (5) = 
P co9 (XX J 21) 2nh7 sin (nx / 22) _ 

I 7/z jcos(nx/l) -cos (sta/l)] 1 T/a [cos (nz/ E)-cos (na / E)I 
co 

hn p_k (cos a) - P, (cos a) 
- 

2 62 [COS(nX/ t)- COS (SU] I)1 

hr k 
X 

k 

x 2 (- l)‘Y,sin [(k - n + l/2) y] - 
n=0 

k 

x 2 (-l)C,cos C (k 
-1. 

(3.32) 

where y and C, are determined, respectively, from (3.31) and (1.43). 
The absolute error admitted here is determined according to (3.29) by the inequality 

sup p,(t)--(D(t)l<$J$ 5c(;zl(a’2) 
tE(---n,=) 

(3.33) 

where 8 is defined by (3.9). and p by (3.30). The left side of the inequality (3.33) is 
evidently arbitrarily small for sufficiently small a. 

Appropriate estimates can also be obtained when A does not satisfy the inequality 



Periodic cOntact prohttm for a half-plane with elastic tapir 819 

f3.10), and therefore, the infinite systems of linear equations (3.Q f3.2) are quasi- 

completely regutar. 
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DUAL TRIC)ONOMETRIC SERIES 

fN CRACK AND PUNCH PROBLEMS 
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B. A. KUDRIAVTSEV and V. 2. PARTON 
(Moscow) 
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The author obtains the solution of a certain class of dual ~Igonome~c series with the 

aid of a method proposed by Tranter [l]. Certain crack and punch problems, both static 
and dynamic, reduce to this class. As an example the problem of steady-state vibration 
ofan unbounded plane with a periodic system of slits along the real axis is considered. 

The solution which is obtained permits the determination of a, purely inertial effect 
which lowers the fracture load. 

1, Let us consider the dual trigonometric series 
03 


